AI

G検定

G検定対策 究極カンペをつくろう#4 Attention(Transformer構成要素、モデルアーキテクチャの系譜、 Attention基本概念、自己注目と多視点処理、Attention計算構造)

Seq2SeqからTransformerへの進化により、自然言語処理は理解系(BERT)と生成系(GPT)に分岐した。AttentionはSelf・Multi-Head・Encoder-Decoder型に分類され、Query・Key・Valueによる計算構造が中核を成す。位置エンコーディングや残差接続などの補助構成要素が、Transformerの性能と安定性を支えている。
G検定

G検定対策 究極カンペをつくろうバックナンバー

G検定まとめ記事はこちらはじめに結構昔にG検定向けの動画で、「JDLAジェネラリスト検定(G検定)さっくり対策(究極カンペの作り方)カンペを見なくても問題が解ける自分の作り方。」というのを公開しているのだが、これに対しての問い合わせがちょく...
数値計算

数理的なエッセイ集

その他数理関連(MATLAB、Python、Scilab、Julia比較ページ)はこちらはじめになんとなく思いつきで書いたエッセイ集。適当なタイミングで更新エッセイ集ソフトウェア設計における因果関係の明確化条件分岐や状態遷移の数理的な記述並...
G検定

G検定対策 究極カンペをつくろう#3 自然言語処理(基盤技術、テキスト表現、モデルアーキテクチャ、言語モデル、LLM、評価ベンチマーク、応用タスク)

自然言語処理は、単語の分割から意味理解・文生成・応用まで、因果関係に基づいて技術が連続的に発展している。基盤技術・テキスト表現・モデルアーキテクチャ・言語モデル・LLM・応用タスクの各領域が相互に関連している。技術の背景や目的を理解することで、単なる用語暗記ではなく、体系的な理解が可能となる。
数値計算

関数をハックせよ:多項式回帰・フーリエ級数・ニューラルネットによる関数近似戦略

その他のエッセイはこちら筆者の立ち位置と本稿の目的筆者は自動車業界でエンジニアとして働いており、日々の業務ではセンサーデータや物理モデルの解析に携わっている。特に、多項式回帰やフーリエ変換を用いた関数近似や信号処理は、実務で頻繁に活用してい...
数値計算

オブジェクト指向を線形代数で読み解く:エンジニアのための思考実験

ソフトウェア設計における因果関係の明確化。条件分岐や状態遷移の数理的な記述。並列処理やバッチ処理の自然な導入。AIモデルとの構造的な共通性の理解。
動画作成

VOICEVOXとAivisSpeechキャラと一緒に!AviUtlを使った動画作成 バックナンバー(立ち絵やら動画やらアイキャッチ画像やら)

動画作成関連のバックナンバー用ページ。立ち絵を作ったり、動画作ったり、アイキャッチ画像作ったりなどを掲載していく。
G検定

G検定対策 究極カンペをつくろう#2 画像認識(一般物体認識、物体検出、セグメンテーション、姿勢推定)

画像認識の全体像を因果関係図で整理し、AlexNetを起点に各モデルの進化をたどる。一般物体認識から物体検出・セグメンテーション・姿勢推定まで、各カテゴリの代表モデルと技術を解説。モデル同士の構造的なつながりや技術的背景を踏まえ、因果関係をもとに体系的に理解を深めていく。
G検定

G検定対策 究極カンペをつくろう#1(G検定は意味がない?)

究極カンペの作り方についての問い合わせが増えている。G検定の評判を確認し、ネガティブな意見を問題提起として捉える。勉強のステージを定義し、語彙力と因果関係の把握が重要であることを説明。
動画作成

【PSDファイル】AivisSpeech Anneliの立ち絵を作ってみた(アイコン画像をStable Diffusionで拡張 その2)

VOICEVOXとAivisSpeechキャラと一緒に!AviUtlを使った動画作成 バックナンバーはじめに以前、AivisSpeechのAnneliというキャラの立ち絵を作成した。さらにそこに加えて、AivisSpeechのアイコン画像を...