G検定

G検定対策 究極カンペをつくろう#10 マルチモーダル(CLIP,DALL-E,Flamingo,Unified-IO,Zero-shot,基盤モデル,マルチタスク学習)

基盤モデルを起点に共有表現→マルチタスク学習→Zero-shotへと汎化が連鎖し、画像×テキストを同一意味空間で扱う枠組みを整理した記事である。主要タスクは画像キャプション・テキスト→画像生成・視覚質問応答であり、共有表現を背骨に検索・生成・説明・応答へ橋渡しする。代表モデルはCLIP(検索)、DALL·E(生成)、Flamingo(少数例対応)、Unified-IO(統合処理)であり、活用は検索/クリエイティブ/アクセシビリティ/ロボティクス/EC/医療に及ぶ。
動画作成

AivisSpeech まお と コハク の立ち絵を作ってみた(猫音コハク,卯畑まお:オズチャット©Trippy様)

VOICEVOXとAivisSpeechキャラと一緒に!AviUtlを使った動画作成 バックナンバーはじめにはじめましての方もこんにちは。AivisSpeechで使える音声モデル、猫音コハクと卯畑まおの立ち絵配布ページです。この記事では、オ...
G検定

G検定対策 究極カンペをつくろうバックナンバー

G検定まとめ記事はこちらはじめに結構昔にG検定向けの動画で、「JDLAジェネラリスト検定(G検定)さっくり対策(究極カンペの作り方)カンペを見なくても問題が解ける自分の作り方。」というのを公開しているのだが、これに対しての問い合わせがちょく...
G検定

G検定対策 究極カンペをつくろう#9 転移学習・ファインチューニング(Few-shot, One-shot, 自己教師あり学習, 事前学習, 事前学習済みモデル, 破壊的忘却, 半教師あり学習)

事前学習が汎用表現を供給し、転移学習→ファインチューニングへと因果的に接続してターゲットタスクへ効率適応する構図である戦略(特徴抽出・全体微調整・凍結・層別LR・ヘッド置換・正則化・早期終了)、少数ショット、自己教師あり・半教師あり、そしてResNet・BERT・ViTの役割を位置づけた。適用場面(小規模データ・計算制約・ドメイン近接/シフト)に潜む破壊的忘却・過学習・負の転移をEWC・部分凍結・データ混合・低LRで抑え、データ準備→評価の実務手順を示した。
G検定

G検定対策 究極カンペをつくろう#8 データ生成(CycleGAN, DCGAN, Diffusion Model, NeRF, Pix2Pix, 音声生成, 画像生成, GAN, 文章生成)

生成AIは タスク→モデル→学習原理→データ要件→評価→応用 の因果で理解すると全体像が掴めるのである。手法選定は目的(タスク)と制約(データ・計算・権利)から逆算し、GAN/拡散/NeRF/言語モデルを使い分けるべきである。評価は単一指標に依存せず 複数指標+人手評価 を併用し、再現性と法倫理を運用に組み込むべきである。
G検定

G検定対策 究極カンペをつくろう#7 強化学習(マルコフ性、MDP、価値関数、目的関数、探索と行動選択、Q学習、SARSA、方策勾配、Actor-Critic)

理論基盤は マルコフ性 → マルコフ過程 → MRP → MDP → 誘導MRP の階段であり、MDP が中心モデルである。価値は V,Q,A と最適値 V^*,Q^*、目的関数は Jγ,Javg で、γ は未来重視度のノブである。探索と行動選択は ε-greedy/Softmax/UCB/Thompson/OFU を使い分け、実装は TD→SARSA/Q 学習、REINFORCE、Actor-Critic を軸に据えるべきである。
数値計算

数理的なエッセイ集

その他数理関連(MATLAB、Python、Scilab、Julia比較ページ)はこちらはじめになんとなく思いつきで書いたエッセイ集。適当なタイミングで更新エッセイ集ソフトウェア設計における因果関係の明確化条件分岐や状態遷移の数理的な記述並...
数値計算

Skip ConnectionとODE:変化と恒常の構造分離

Neural ODEとの比較:Skip Connectionを連続時間のモデルとして捉えた場合、Neural ODEとの関係をより厳密に整理することで、深層学習と力学系の接続がさらに明確になる可能性がある。他の構造への応用:TransformerにおけるSkip ConnectionやAttention機構など、他の構造に対してもODE的な視点を適用することで、さらなる数理的理解が得られるかもしれない。構造設計へのフィードバック:数理的な視点から得られた知見を、ネットワーク設計やハイパーパラメータの選定に活かすことで、より効率的なモデル構築が可能になる。
数値計算

CNNとFCの融合体:Attention機構が切り開く知能の地形図

その他のエッセイはこちら序論:抽象化のジレンマとAttentionの登場本稿は、自動車業界に従事するエンジニアの視点から、AI技術の中でも特に注目されているAttention機構について、その構造的・機能的意義を探るものである。筆者自身はA...
G検定

G検定対策 究極カンペをつくろう#6 深層強化学習(強化学習の基本構造、価値ベースアルゴリズム、方策勾配アルゴリズム、分散・統合型アルゴリズム、補助・拡張技術、学習設定と環境構築、応用事例)

強化学習は「状態・行動・報酬・環境・エージェント」の基本構造を中心に、補助技術と連携して進化してきた。DQNやPPOを軸に、価値ベース・方策勾配・分散型アルゴリズムが技術的に発展し、応用事例へとつながっている。因果関係図を活用することで、技術のつながりと応用先が体系的に理解でき、G検定対策にも有効である。