数値計算

MATLAB,Python,Scilab,Julia比較 第4章【バックナンバー】

はじめに MATLAB,Python,Scilab,Julia比較するシリーズの第4章。 第3章では画像処理、座標変換の話がメインだった。 第4章は分類問題関連の話がメインとなる。基本的には以下の流れとなる。 形式ニューロン 決定境界線の安...
数値計算

MATLAB,Python,Scilab,Julia比較 第4章 その28【連鎖律の前準備②】

連鎖律を把握するための知識を列挙。 恐らく数式ラッシュになる。 まずは逆数の微分公式。 途中、式を分解してそれぞれの導関数を求めてから代入で導出できる。
数値計算

MATLAB,Python,Scilab,Julia比較 第4章 その27【連鎖律の前準備①】

総当たり法では非効率なので最適化アルゴリズムを使用する。 最適化アルゴリズムを使用するには連鎖律が必要。 連鎖律を利用するには損失、活性化関数、各層の入力の導関数を求める必要がある。
数値計算

【入門】シグモイドによる決定境界安定化(Julia)【数値計算】

活性化関数をシグモイド関数にした形式ニューロンをJuliaで実現。 結果はカスタムヘヴィサイドの時と一緒。
数値計算

【入門】シグモイドによる決定境界安定化(Scilab)【数値計算】

活性化関数をシグモイド関数にした形式ニューロンをScilabで実現。 結果はカスタムヘヴィサイドの時と一緒。
数値計算

【入門】シグモイドによる決定境界安定化(Python)【数値計算】

活性化関数をシグモイド関数にした形式ニューロンをPython(NumPy)で実現。 結果はカスタムヘヴィサイドの時と一緒。
数値計算

【入門】シグモイドによる決定境界安定化(MATLAB)【数値計算】

活性化関数をシグモイド関数にした形式ニューロンをMATLABで実現。 結果はカスタムヘヴィサイドの時と一緒。
数値計算

MATLAB,Python,Scilab,Julia比較 第4章 その26【シグモイドによる決定境界安定化⑥】

活性化関数をシグモイド関数にした形式ニューロンをJuliaで実現。 結果はカスタムヘヴィサイドの時と一緒。
数値計算

MATLAB,Python,Scilab,Julia比較 第4章 その25【シグモイドによる決定境界安定化⑤】

活性化関数をシグモイド関数にした形式ニューロンをScilabで実現。 結果はカスタムヘヴィサイドの時と一緒。
数値計算

MATLAB,Python,Scilab,Julia比較 第4章 その24【シグモイドによる決定境界安定化④】

活性化関数をシグモイド関数にした形式ニューロンをPython(NumPy)で実現。 結果はカスタムヘヴィサイドの時と一緒。