2025-10

G検定

G検定対策 究極カンペをつくろう#8 データ生成(CycleGAN, DCGAN, Diffusion Model, NeRF, Pix2Pix, 音声生成, 画像生成, GAN, 文章生成)

生成AIは タスク→モデル→学習原理→データ要件→評価→応用 の因果で理解すると全体像が掴めるのである。手法選定は目的(タスク)と制約(データ・計算・権利)から逆算し、GAN/拡散/NeRF/言語モデルを使い分けるべきである。評価は単一指標に依存せず 複数指標+人手評価 を併用し、再現性と法倫理を運用に組み込むべきである。
G検定

G検定対策 究極カンペをつくろう#7 強化学習(マルコフ性、MDP、価値関数、目的関数、探索と行動選択、Q学習、SARSA、方策勾配、Actor-Critic)

理論基盤は マルコフ性 → マルコフ過程 → MRP → MDP → 誘導MRP の階段であり、MDP が中心モデルである。価値は V,Q,A と最適値 V^*,Q^*、目的関数は Jγ,Javg で、γ は未来重視度のノブである。探索と行動選択は ε-greedy/Softmax/UCB/Thompson/OFU を使い分け、実装は TD→SARSA/Q 学習、REINFORCE、Actor-Critic を軸に据えるべきである。
数値計算

Skip ConnectionとODE:変化と恒常の構造分離

Neural ODEとの比較:Skip Connectionを連続時間のモデルとして捉えた場合、Neural ODEとの関係をより厳密に整理することで、深層学習と力学系の接続がさらに明確になる可能性がある。他の構造への応用:TransformerにおけるSkip ConnectionやAttention機構など、他の構造に対してもODE的な視点を適用することで、さらなる数理的理解が得られるかもしれない。構造設計へのフィードバック:数理的な視点から得られた知見を、ネットワーク設計やハイパーパラメータの選定に活かすことで、より効率的なモデル構築が可能になる。