MATLAB,Python,Scilab,Julia比較 その21【行列演算④】

MATLAB,Python,Scilab,Julia比較 その21【行列演算④】数値計算
MATLAB,Python,Scilab,Julia比較 その21【行列演算④】

バックナンバーはこちら。
https://www.simulationroom999.com/blog/compare-matlabpythonscilabjulia-backnumber/

スポンサーリンク

はじめに

前回は、アダマール積について。
比較的特殊な演算なので、そういうものがあるという程度で留めておいてもよいかも。

今回は除算について。

スポンサーリンク

登場人物

博識フクロウのフクさん

指差しフクロウ

イラストACにて公開の「kino_k」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=iKciwKA9&area=1

エンジニア歴8年の太郎くん

技術者太郎

イラストACにて公開の「しのみ」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=uCKphAW2&area=1

スポンサーリンク

行列の除算

フクさん
フクさん

まず、行列は原則的には除算は存在しない

太郎くん
太郎くん

まさかの一言での終了!

フクさん
フクさん

まぁ除算は存在しないが、除算相当は存在する

太郎くん
太郎くん

あ、以前出来てきた「逆行列を掛ける」ってやつか。

フクさん
フクさん

そうそう。
さらに行列はスカラーの演算とことなり、
積の結合法則はあれど、交換法則はない

太郎くん
太郎くん

結合法則?交換法則?

フクさん
フクさん

この感じ。

結合法則

\(
(AB)C=A(BC)
\)

交換法則(行列に於いて、こっちは成立しない)

\(
AB=BA
\)

太郎くん
太郎くん

あー、行列の位置を勝手に入れ替えちゃだめってことか。

フクさん
フクさん

正解。

スポンサーリンク

左除算、右除算

フクさん
フクさん

そして、交換法則が無いが故に、
左除算、右除算という概念が出てくる。

太郎くん
太郎くん

もう具体的にどういう演算なのか見せてもらった方が良い気がする。

フクさん
フクさん

そうだな。
それほど難しい話でもないから見てもらった方が早いな。

左除算

\(
A\backslash B=
A^{-1}B=
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}^{-1}
\begin{bmatrix}
5 & 6 \\
7 & 8
\end{bmatrix}=
\displaystyle
\frac{1}{1\times4-2\times3}
\begin{bmatrix}
4 & -2 \\
-3 & 1
\end{bmatrix}
\begin{bmatrix}
5 & 6 \\
7 & 8
\end{bmatrix}
\)
\(
=\begin{bmatrix}
-3 & -4 \\
4 & 5
\end{bmatrix}
\)

右除算

\(
A/B=
AB^{-1}=
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}
\begin{bmatrix}
5 & 6 \\
7 & 8
\end{bmatrix}^{-1}=
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}
\displaystyle
\frac{1}{5\times8-6\times7}
\begin{bmatrix}
8 & -6 \\
-7 & 5
\end{bmatrix}
\)
\(=
\begin{bmatrix}
3 & -2 \\
2 & -1
\end{bmatrix}
\)

太郎くん
太郎くん

逆行列をどちらに置くかで左除算、右除算が変わるってことか。

フクさん
フクさん

まぁ実際には除算で表現せずに逆行列で表現することの方が多いから、
この表現も少数派にはなるけどねー。

太郎くん
太郎くん

じゃー、なぜこんな説明を追加したのか・・・。

フクさん
フクさん

各ツール、言語で左除算、右除算の記述をサポートしていることが多いんでね。
少なくともMATLABはサポートしてる。

太郎くん
太郎くん

なるほど。
これを知っておくと、各ツール、言語の便利機能が使えるってことか。
そういうことなら納得だ。

スポンサーリンク

まとめ

フクさん
フクさん

まとめだよ。

  • 行列の除算について。
  • 行列は原則的に除算は存在しないが、「逆行列を掛ける」がそれに該当する。
  • さらに行列の積は結合法則はあれど、交換法則はない。
  • 上記に伴い、左除算、右除算と言う概念が出てくる。
    • 逆行列の位置が変わる。
    • 数式上ではあまり出て来ないが、各ツール、言語がサポートしていることが多い。

バックナンバーはこちら。

コメント

タイトルとURLをコピーしました