【FFTへ】MATLAB、Pythonで株価予測 その6【至る道④】

【FFTへ】MATLAB、Pythonで株価予測 その6【至る道④】株価予測
【FFTへ】MATLAB、Pythonで株価予測 その6【至る道④】

バックナンバーはこちら。
https://www.simulationroom999.com/blog/stock-predict-matlabpython-backnumber/

スポンサーリンク

はじめに

前回はフーリエ変換、逆フーリエ変換の数式確認・・・、
と思いきや、それらの元ネタである「フーリエの積分公式」の話だった。
フーリエ変換、逆フーリエ変換の対称性を示すには必要な数式なのでどうしても外せなかったというのが理由。

今回こそはフーリエ変換、逆フーリエ変換の数式確認。

スポンサーリンク

登場人物

博識フクロウのフクさん

指差しフクロウ

イラストACにて公開の「kino_k」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=iKciwKA9&area=1

エンジニア歴8年の太郎くん

技術者太郎

イラストACにて公開の「しのみ」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=uCKphAW2&area=1

スポンサーリンク

【再掲】フーリエの積分公式

フクさん
フクさん

とりあえず、前回説明した「フーリエの積分公式」を再掲しておく。

\( \displaystyle f(x)=\int^{\infty}_{-\infty} \{ \frac{1}{2\pi}\int^{\infty}_{-\infty}f(t)e^{-i\omega t}dt \}e^{i\omega x}d\omega \)

太郎くん
太郎くん

(ア、アカン。目が回る・・・。)

フクさん
フクさん

とりあえず、この数式の意味は深く考えなくても良いよ。
意味わからんかもしれんけど、
\(f(t)\)と\(f(x)\)が同じものなのに、畳み込み積分を挟んでも同じにできる理屈を示しているってことだけ覚えておいて。

太郎くん
太郎くん

よし!覚えた!(覚えただけだ)

スポンサーリンク

フーリエ変換の式

フクさん
フクさん

で、フーリエ変換の式だけど、
先ほどのフーリエの積分公式の中に埋まってる

太郎くん
太郎くん

埋まってる?

フクさん
フクさん

以下の赤い部分だな。

\( \displaystyle f(x)=\int^{\infty}_{-\infty} \{ \frac{1}{2\pi}\color{red}{\int^{\infty}_{-\infty}f(t)e^{-i\omega t}dt} \}e^{i\omega x}d\omega \)

フクさん
フクさん

これを取り出して、以下と提示したものがフーリエ変換

\(\displaystyle F(\omega)=\int^{\infty}_{-\infty} f(t)e^{-i\omega t}dt \)

太郎くん
太郎くん

これで周波数が取り出せるの?

フクさん
フクさん

うん。
理屈上は。
その理屈は複素フーリエ級数、複素フーリエ係数が証明してるものなので、
ここでは説明しないが。

太郎くん
太郎くん

うーん、良く分からんが、そういうことだと思っておこう。

スポンサーリンク

逆フーリエ変換

フクさん
フクさん

そして、フーリエ変換の式が分かったことで逆フーリエ変換も確定する。
以下の式になる。

\(\displaystyle f(x)=\frac{1}{2\pi}\int^{\infty}_{-\infty}F(\omega)e^{i\omega x}d\omega \)

太郎くん
太郎くん

ん?
この式はどこから来たんだ??

フクさん
フクさん

単純に\(F(\omega)\)をフーリエの積分公式に戻しただけだよ。

太郎くん
太郎くん

あ、なるほど。
そういうことか。

フクさん
フクさん

そして、フーリエの積分公式の前提が\(f(t)=f(x)\)なので、
逆フーリエ変換は\(F(\omega)\)元の\(f(t)\)に戻せる。

太郎くん
太郎くん

少し頭がこんがらがってる感じはするけど、
言いたいことはなんとなくわかるぞ。

フクさん
フクさん

まぁ無理に理解する必要はない。
以下を覚えておけばOKだ。

  • とある関数を畳み込み積分を経て、元に戻せることを証明されているフーリエの積分公式がある。
  • フーリエの積分公式の一部をフーリエ変換と定義した。
  • フーリエ変換をフーリエの積分公式に戻すと逆フーリエ変換になる。
太郎くん
太郎くん

よし!覚えた!(覚えただけだ(2回目))

フクさん
フクさん

で、ここからがバリエーションの話になる。

太郎くん
太郎くん

そういえば、そんなこと言ってたね。

スポンサーリンク

まとめ

フクさん
フクさん

まとめだよ。

  • フーリエの積分公式は「とある関数を畳み込み積分を経ても同じ関数に戻せる」と証明されているもの。
    • 複素フーリエ級数、複素フーリエ係数で証明可能だが、ここでは省略。
  • フーリエの積分公式の一部をフーリエ変換と定義した。
  • フーリエ変換の式をフーリエの積分公式に戻すことで逆フーリエ変換の式が完成。

バックナンバーはこちら。

コメント

タイトルとURLをコピーしました