【やり直し】力学さっくり解説【高校物理】

物理学
スポンサーリンク

はじめに

自動車関連の制御及び制御対象を理解するには、物理と数学の知識が必要とされることが多い。
しかし、実のところ本当に必要とされるのは、高校物理レベルの力学の範囲でおおよそ十分。
よって、本記事では高校物理の力学についてさっくりと解説する。

発端

社内、社外でいろいろと技術関連の講釈、講義をすることがまぁまぁあるが、とある人からこういうことを言われた。

「○○(私の名前)さんの言ってることはなんとなく分かるけど、やっぱり良くはわからない。たぶん力学を理解できていないんだと思う。」

なるほど。確かに力学の知識が無い状態で聞いても分かるわけがない。
物理学全般になると話がやや大きいが、力学だけであればある程度情報をシュリンクしてまとめられそうである。
思い立ったが吉日的にまとめてみることにした。

尚、ここ言う力学は古典力学ことニュートン力学を指す。

ニュートン力学の構成

  • ニュートン力学をの要素分解
  • その上で推奨学習順序を設定
直交座標,直線運動,極座標系,回転運動,ニュートン力学

微分積分についての最低限の復習

積分、微分、変化しないものや平均値が分かっているものは掛け算割り算で良い。変化するものは微分積分で考える。

直交座標系

加速度による速度と距離の定義

加速度という概念を元に速度と距離を定義することで加速度を定義する。加速度は見ることができないため。

直線運動(力、運動量、仕事、仕事率)

力、運動量、仕事、仕事率、運動方程式、運動量の定義、運動エネルギー、位置エネルギー、出力、自動車の出力(馬力)、時間、速度の関係性

弧度法

弧長、回転距離、角度、半径、ラジアン、円周率、サボりの境地、極座標系、弧度法

外積

外積、Fb=Fcos(θ-90°)=Fsin(θ)

極座標系

円周と角速度

角速度、角度、関係性、時間、速度、距離、回転半径

回転運動(トルク、角運動量、仕事、仕事率)

直交座標系、極座標系、トルク、角運動量、仕事、仕事率、時間の関係性、関係性、回転の運動方程式、角運動量の定義、イナーシャ、運動エネルギー、仕事の定義、モーターの出力、回転の仕事

回転運動と直線運動の関係性

質量、円周、移動距離、回転角度、2π、移動距離、外積、直交、作用反作用、摩擦、摩擦係数、トルク

まとめ

  • 微分積分は割り算/掛け算に置き換えて考えてみる。
    • 微分≒割り算。
    • 積分≒掛け算。
  • 直交座標系力学のポイント。
    • 加速度、速度、距離の関係性。
    • 力×時間で運動量。
    • さらに×速度で仕事。
    • それを÷時間で仕事率。
    • ショートカットも可能 。
      • 力×速度=仕事率。
      • 力×距離=仕事。
  • 極座標系力学のポイント。
    • ラジアンで楽をする。
    • 以下を知っていれば、直交座標系の概念がそのまま使える。
      • 距離=回転距離
      • 速度=角速度×半径
  • 直交座標系と極座標系は仕事、仕事率で繋がっている。
  • 視点を変えて、自分で勝手な式に作り替えても良い。
    • というか、そういう学問。
    • 物事を単純なパラメータへばらすテクニックの集大成と捉えても良い。

コメント

タイトルとURLをコピーしました